| MEASURING THE WIND SPEED OF THE FAN | miles per hour | |-------------------------------------|----------------| | Using an Anemometer (wind gauge) | nines per nour | | MEASURING THE ROTATIONS PER MINUTE | rotations per minute | |------------------------------------|----------------------| | (RPM's of the blades) | rotations per mine | ## **ENERGY TURBINE** | ENERGY TURBINE DATA & CALCULATIONS | Value | Units | |--|-------|---------| | 1 - Measure and Record the VOLT output | | [Volts] | | 2 - Measure and Record the AMP output | х | [Amps] | | 3 - Calculate WATTS | = | [Watts] | | WORK | |-------------------------------------| | Volts = Electric Potential | | | | Amps = Measure of Current | | (Flow of Electricity per second) | | Watts = Joules per Second [N*m/sec] | | Watts = Volts * Amps | | | ## **POWER TURBINE** | POWER TURBINE DATA & CALCULATIONS | | |--|--| | 1 - Find the MASS of the Load | | | 2 - Calculate the WEIGHT of the Load | | | (Weight = Mass * Gravity) | | | 3 - Measure TIME to lift the load | | | 4 - Measure DISTANCE that load is lifted | | | 5 - Calculate ENERGY = Weight x Distance
(WORK) = #2 x #4 | | | 6 - Calculate POWER = Energy / Time
POWER = #5 / #3 | | | Value | Units | |-------|---| | | [Grams] | | | [Newtons]
[grams * meter/second ²] | | | [Seconds] | | | [Meters] | | | [Joules] or
[N*m or g*m²/s²) | | | [Watts or Joules/Second]
[N*m/sec or g*m²/s²] | | WORK | | |--|--| | | | | 1 Newton = 1 gram * gravity | | | gravity = 9.8 meters/second ² | | | | | | 1 Foot | | | = .3048 Meters | | | Joule | | | = (Weight * Distance) | | | 1 Watt | | | = 1 Joule/second | | | = (Force * Distance) / Time | | | | |